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Stochastic model related to the Klein-Gordon equation
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In this note, a one-dimensional system composed of an assembly of interacting particles, is considered. Each
particle in the assembly moves in a well-defined trajectory on a line with a velocity of fixed magnitude, which
randomly reverses direction. The intrinsic forces in the system are assumed to induce stochastic transitions
between velocity states in such a way that the average dynamics of the assembly is Newtonian. It is shown that
there is a close analogy between collective oscillations in the model system and the propagation of a free
quantum particle in one dimension.
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In his book on path integrals, Feynman@1# considered a
one-dimensional, two-state stochastic process in which a
ticle is constrained to move on a line with a velocity of fixe
value c whose direction of motion occasionally changes
180°. Because of its zig-zagging path in two-dimensio
space time, the process is sometimes referred to as the ch
erboard model. Feynman found that the properly weigh
summation of all such paths leads to the exact propagato
the one-dimensional Dirac equation. The underlying diff
ential equations of the checkerboard process have been
sidered by Gaveauet al. @2#. Assuming that the reversals o
direction are random and Poisson distributed, the probab
densitiesf1(x,t) andf2(x,t) for a particle at positionx at
time t and moving to the right and to the left, respective
satisfy

]f1

]t
52c

]f1

]x
2w~f12f2!, ~1!

]f2

]t
5c

]f2

]x
1w~f12f2!, ~2!

wherew is the rate of transitions between two velocity stat
Equations~1! and~2! are the continuous version of a pers
tent random walk@3# leading to the telegrapher’s equation

]2f6

]t2
2c2

]2f6

]x2
522w

]f6

]t
. ~3!

In matrix form, one can express Eqs.~1! and ~2! as

S ]

]t
1wDF52cs3

]F

]x
1ws1F, ~4!

where F is the two-component column vector (f1 ,f2)T

ands1 ,s3 are the Pauli matrices. Using the transformati
F5C exp(2wt), one can see that Eq.~4! is equivalent to the
one-dimensional Dirac equation in the Weyl representatio

i\
]C

]t
52 ic\s3

]C

]x
1mc2s1C, ~5!

provided c is identified with the speed of light andw is
analytically continued@2# to the imaginary value2 imc2/\.
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The same phase transformation applied directly to Eq.~3!
leads to the Klein-Gordon equation for each componen
the vectorC.

The checkerboard model allows one to think about so
aspects of quantum behavior in terms of an essentially c
sical stochastic model with an unphysical imaginary tran
tion rate@4#. Furthermore, McKeon and Ord@5# have shown
that an analytic continuation of the transition rate is not
quired to obtain the Dirac equation if the particle is allow
to move stochastically both forward and backward in time
mimic virtual pair creation and annihilation events. This a
proach has been further generalized@6# to incorporate an
external field into Eq.~5!.

The aim of this paper is to draw attention to a tw
velocity-state model of another kind@7#, which immediately
leads to the potential-free Klein-Gordon equation without
course to analytic continuation or backward-time motion. L
us extend the assumption that velocity reversals are Poi
distributed to the general case, when transitions between
velocity states are described by the arbitrary ‘‘field’’j(x,t),

]f1~x,t !

]t
52c

]f1~x,t !

]x
1j~x,t !, ~6!

]f2~x,t !

]t
5c

]f2~x,t !

]x
2j~x,t !. ~7!

Addition and subtraction of Eqs.~6! and ~7! yields

]f

]t
52c

]D~x,t !

]x
, ~8!

]D

]t
52c

]f

]x
12j, ~9!

where we have defined

f~x,t !5f1~x,t !1f2~x,t !,

D~x,t !5f1~x,t !2f2~x,t !.

Taking the time derivative of Eqs.~8! and ~9! gives
©2001 The American Physical Society01-1
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]2f

]t2
5c2

]2f

]x2
22c

]j

]x
, ~10!

]2D

]t2
5c2

]2D

]x2
12

]j

]t
. ~11!

If the field j(x,t) satisfies the equation

]j~x,t !

]x
5af~x,t ! ~12!

with the constanta chosen to bea5m2c3/(2\2), then it
follows from Eq. ~10! that the functionf(x,t) satisfies the
Klein-Gordon equation

]2f

]t2
5c2

]2f

]x2
2

m2c4

\2
f. ~13!

Similarly, if the field j(x,t) obeys the condition

1

c

]j~x,t !

]t
52aD~x,t ! ~14!

with the same constanta as above, the Klein-Gordon equa
tion for the functionD(x,t) follows immediately from Eq.
~11!. When j(x,t) satisfies both conditions~12! and ~14!
simultaneously, the Klein-Gordon equation holds for bo
functionsf(x,t) andD(x,t), which could be considered a
components of a two-component vector field. Note that
~8! connecting the componentsf and D in the two-
component field has the form of the Lorentz gauge.

It is difficult to interpret Eqs.~12! and ~14! within the
framework of the single-particle model. Clearly the functi
f(x,t) cannot be interpreted as a probability density fo
single-particle stochastic process since, in general, the s
tions of the Klein-Gordon equation are not positive defini
On the other hand, the fact thatf(x,t) satisfies Eq.~8!,
which is of the form of a continuity equation, suggests t
interpretation of the functionsf6(x,t) as perturbations o
charge densities in a many-body system. Below we out
one possible many-particle model in which Eqs.~12! and
~14! have a clear physical meaning.

Consider a hypothetical plasmalike substance, which c
sists of an ensemble of identical particles of chargeq and
massm moving in a uniform compensating background
the opposite charge. We assume that particles can move
along thex axis and their velocities can only take two value
c and2c. Suppose the dynamics of local densitiesF1(x,t)
andF2(x,t) of particles traveling in the positive and neg
tive directions, respectively, are determined by the equat

]F6~x,t !

]t
57c

]F6~x,t !

]x
1g6~x,t !, ~15!

where the termsg1 andg2 describe transitions at positionx
and timet between the two velocity states. In contrast to t
original checkerboard model, where the velocity reversal
Poisson-distributed stochastic process, we assume tha
03710
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transitions are induced by the intrinsic fieldE(x,t) resulting
from local fluctuations of the net charge density around
equilibrium value of zero. If the particles interact through
Coloumb-like long-ranged force, the fieldE(x,t) satisfies the
Poisson equation

]E

]x
54pq~F2F0!, ~16!

whereF0 is the constant density of the compensating ba
ground charge andF(x,t)5F21F1 is the total particle
density.

Since the particles in the assembly interact through
forceF(x,t)5qE(x,t), but can only assume discrete veloc
ties c and 2c, a rule specifying how the force determine
velocity reversal in the assembly must be postulated. I
possible to choose rules for the velocity reversal in suc
way that densities of the system behave according to part
lar dynamical laws. Let us define the transition terms so t
the momentum densityP(x,t)5mc@F1(x,t)2F2(x,t)#
evolves according to classical Newtonian dynamics, i.e.,
force-induced variation satisfies

S ]P

]t D
f

5qEF. ~17!

The connection between the force and the transition te
g6 can be made by noting that the variation of the mom
tum density is a result of the velocity reversal, and hence

S ]P

]t D
f

5mc~g12g2!. ~18!

Sinceg152g2 for the two-velocity-state model, Eqs.~17!
and ~18! imply that the transition terms are determined by

g6~x,t !56
qF~x,t !E~x,t !

2mc
. ~19!

These rules can be implemented on the level of a sin
particle by stipulating that the velocity reversal occur with
probability determined by the transition termg6 when the
force F(x,t) and the particle velocity are in opposite dire
tions and do not change when the force and velocity are
the same direction.

The model formulated above is dynamical in the sen
that the transition rates between the two velocity state
completely specified by the intrinsic fieldE(x,t). On the
other hand, the motion of individual particles in the assem
is stochastic since only the probability of finding a particle
a particular velocity state is determined. Although the fie
E(x,t) governs the transition terms at a given point, it do
not depend on the particle index and hence any particle a
point has an equal probability to reverse its direction.

In equilibriumF1(x,t)5F2(x,t)5F0/2, the plasma has
no net charge or current, and the fieldE(x,t) is zero. Local
fluctuations of the charge density from neutrality gives r
to excitations
1-2
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f6~x,t !5F6~x,t !2F0/2, ~20!

which can be represented as a superposition of waves
frequencies close to

vp5S 4pq2F0

m D 1/2

. ~21!

These waves correspond to electrostatic waves in a clas
plasma, and, to linear order in the fluctuations, satisfy

]f6

]t
57c

]f6

]x
6

qF0

2mc
E, ~22!

which are just Eqs.~6! and ~7! with

j~x,t !5
qF0

2mc
E~x,t !. ~23!

With j given by Eq.~23!, condition~12! is equivalent to the
Poisson equation

]E

]x
54pqf, ~24!

provided that a52pq2f0 /mc. Furthermore, the secon
condition ~14! takes the form

1

4p

]E

]t
52qcD~x,t !, ~25!

which implies that the displacement current exactly canc
the drift currentj 5qcD associated with particle oscillation
This cancellation reflects the fact that electrostatic waves
not involve a magnetic field.

Equations~22!, ~24!, and ~25! lead to the Klein-Gordon
equation for the charge fluctuationf(x,t) and the current
density D(x,t) provided the Debye screening lengthlD
5c/vp of the plasma is taken to be the Compton wavelen
lC of plasma particles,
h

hy

lk

v
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lD5S mc2

4pq2F0
D 1/2

↔lC5
\

mc
. ~26!

Thus, we see that there is a correspondence between coh
oscillations ~plasma waves! of the assembly of interacting
particles with two velocity states and the propagation o
free quantum particle in one dimension. The existence
such a correspondence is not surprising, since the appr
mate dispersion relation for electrostatic waves in a hot c
sical plasma has the same form as that for a relativistic qu
tum particle. The distinctive feature of a plasma composed
particles with fixed absolute velocities is that for this syste
the quadratic dispersion lawv2(k)5vp

21c2k2, and conse-
quently the Klein-Gordon equation, exactly holds. Anoth
important property of the two-state plasma model is that
velocity of particles is less than the phase velocity of wav
vph'c1(1/2c)(vp /k)2, so Landau damping is absent an
excitations do not decay.

Since the Debye length is the smallest length scale for
collective behavior in plasma, the above considerations
restricted to the case of long-wavelength excitations of
plasma withl.lD . For shorter wavelengths, the cohere
response of particles is suppressed and the plasma beh
like a system of individual particles. On the other hand,
Compton wavelengthlC is the length scale on which th
single-particle quantum equations becomes meaningless
cause of particle-antiparticle creation. In both cases,
length scaleslD andlC give lower bounds for the validity of
the equations, and their correspondence is remarkable
perhaps physically reasonable.

Relation~26! can be also written in the form of a cond
tion for equilibrium density of the plasma

F0↔
1

4p
a21lC

23 , ~27!

wherea5q2/\c is the fine-structure constant. The dens
F0 should be high enough so that the condition of collect
behavior of the plasmaF0lD

3 @1 is satisfied. From relations
~26! and~27!, one can see that this condition is equivalent
a!1.
.
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